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Mechanism for the Faraday instability in viscous liquids
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This report presents a discussion of the wave number selection mechanism in the Faraday instability, which
arises when standing waves form on the free surface of a liquid subject to vertical sinusoidal oscillation. The
focus is on the case where the viscous effects are strong, i.e., when the wavelength is of the same order of
magnitude as the boundary layer thickness at the free surface. We investigate the relationship between the
Faraday instability and the Rayleigh-Taylor instability by performing linear stability calculations. In the deep
water limit (wavelength< liquid depth, our results indicate that the preferred wave number in the Faraday
instability is primarily determined through a Rayleigh-Taylor instability. In the case of shallow \wasee-
length ~ liquid depth, the agreement between the Rayleigh-Taylor and Faraday wave numbers does not
appear to be as good, probably due to the interaction between the oscillatory motion of the standing waves and
the bottom boundary.

PACS numbeps): 47.20.Ma, 47.54:r

Since their observation by Faraday in 1§3], the stand- viscous effectskh>1k5<1), the waves can be modeled by
ing waves produced on the free surface of a liquid undergoa damped Mathieu equatigi]:
ing vertical sinusoidal oscillation have been extensively stud-

ied. Much of that study has been done recently, as these d?¢ d¢
waves provide a convenient way to investigate pattern for-  — +4k? = +[gk+ ok’ p—akcogwt)]{=0. (1)
mation, stability, and dynamics in spatially extended nonlin- dt dt

ear systemse.g., Refs[2]- [5] and references thergirDe-
pending on the properties of the liquid, the depth of theHere,/ is the surface deformatiofamplitude of the surface
liquid layer, and the oscillation frequency, patterns as diversgvaves after the spatial dependence has been factorgdrout
as stripes, squares, and hexagons can be selected at instalylthe surface tensiora is the amplitude of the forcing ac-
ity onset. Of particular interest is the use of relatively viscousceleration, andy is the acceleration of gravity. The physical
liquids (e.g., glycerol-water solutior|8], silicone and paraf- model this equation corresponds to is that of a damped pen-
fin oils [4,6]), which damp sidewall effects and cause thedulum whose pivot point oscillates vertically at frequengy
selected pattern to be independent of container shape. Thithd amplitudea [8]. The instability is parametric in nature
was first demonstrated by Edwards and Fauve, who used gince the forcing appears in the coefficient Bfrather than
two-frequency forcing scheme to generate surface wavesrough an inhomogeneous term. As first noted by Benjamin
possessing quasicrystalline order in containers of differenand Ursell, standing waves can form evenafig<1 [9].
shapeg3]. When the water becomes shallow and viscous effects remain
A measure of the influence of viscous forces on the Farweak (kh~1, ké<1), an equation which is nonlocal in time
aday instability is given by the produ&®, wherek is the  (i.e., an integro-differential equatipris needed to describe
instability wave number and is the boundary layer thick- the behavior off [10,11. The nonlocality arises because of
ness at the free surfa¢@]. k! provides a measure not only viscous dissipation at the bottom boundary, and it corre-
of the instability wavelength, but also of the depth to whichsponds to a history-dependent damping in the pendulum
the free surface disturbance extends into the bulk liquid. Armodel mentioned above. Again, instability can occur even if
order of magnitude estimate & is \v/w, wherev is the  a/g<1.
kinematic viscosity of the liquid and is the forcing fre- The surface deformation also obeys a nonlocal equation
qguency. Whenkd<1, viscous effects are weak, whiled  when the water is deep and viscous effects are stréag (
~1 implies that viscous effects are strong. The other impor>1ks~1) [12]. However, Cerda and Tirapegui have shown
tant length scale in the problem is the liquid depthkh  that a local equation can quantitatively describ&hen the
>1 is known as the deep water limit, while we will refer to water becomes shallof#7]. This equation is again a Mathieu
kh~1 as the shallow water case. equation, but the dependence of the damping on the wave
The behavior of the standing waves in each of the regimesumber is much different than when viscous effects are
suggested by the above characterization has previously beereak. In this regime Kh~1ké~1), diffusion of momen-
examined through linear stability analyses; we briefly sumtum occurs so rapidly relative to the surface oscillations that
marize some key results. In the limit of deep water and wealkhe damping no longer depends on the history of the motion.
When viscous effects are strong, the critical acceleration am-
plitude,a., required to excite the standing waves is typically
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sible for this instability. Although the instability can still be stability calculations for both the Faraday and RT instabili-
characterized as parametric, the fact thatg>1 suggests ties. First, for a given set of problem parameters, we compute
that a Rayleigh-Taylo(RT)-type mechanism may be impor- a. along with the corresponding critical wave numbler,

tant because the container experiences a body force in thEhen, using a mean upward acceleration base@gnwe
direction opposite to gravity for part of the oscillation period. calculate the fastest growing wave number of the associated
Lioubashevskiet al. explored this idea by scaling the mean RT instability. Good agreement of this wave number with
upward acceleration based ap with hw?, and plotting the  that from the Faraday instability would indicate that the
result against §/h)? [13]. The data from a number of differ- wave number selection mechanism is a RT instability.

ent experiments in the shallow water case were found to The calculations concerning the Faraday instability are
collapse onto a single curve, and the scaling was found tperformed by the method we used previously]. A recur-
break down asa. approachedy. This issue was also ad- sion relation for the temporal modes of the free surface de-
dressed by Cerda and Tirapegui. Based on the moddbrmation is developed, converted into an eigenvalue prob-
Mathieu equation they developed, they stated that.the lem, and then solved numerically. The calculations
amplification is due essentially to the fact that the systentoncerning the RT instability are performed by solving the
spends time in regions of effective negative accelerationselevant dispersion relations using Newton’s method. In the
which is an unstable situation as the Rayleigh-Taylor instainfinite-depth case, we solve

bility shows..."” (p. 221 of Ref[7]).

Although both of the above studies recognize the potential
importance of a RT instability, neither explicitly calculates
and compares a RT wave number with a Faraday wave num-
ber. In this work, we bridge that gap by performing linear while in the finite-depth case, we solve

(o
—ack+ ;k3+ v2(q*+209%k?—4gk*+kH =0, (2

et Th 2 4k?q(k?+g?)— C coshgh)coshikh)+ D sinh(gh)sinh(kh) B 3
Ak KT q coshgh)sinh(kh) — k costikh)sinh(qh) =% ©)
|
C=0q(q*+29%k?+5k%), (4) critical wave number from the Faraday and RT calculations
versusa,/g. For v=1 cnf/s, the RT results underpredict
D=Kk(q*+6q%k?+k*). (5)  the Faraday results by 25%t a./g~58) to 42%(at a./g

~5) [Fig. 1(@]. Much better agreement is achieved when
Hereq?=k?+ s/ v, wheres s the instability growth rate. The Vviscous effects become stronger, as seen in Rig. @where

mean upward acceleratioa,, is defined to be v=10 cnt/s. Now, the RT results underpredict the Faraday
results by 1%ata./g~6), and overpredict them by 6%t

__ @ (572 2 a./g~203). Finally, Fig. 1c) demonstrates that the agree-
) [accodwt) ~gldt=Ta:~g. ) ment continues to be reasonably gdwdthin about 10% for

v=100 cnf/s. These results indicate that for the case of

These dispersion relations can be derived from those for urdeep water and strong viscous effects, the preferred wave
forced free surface wavdd40,14; one simply needs to re- number in the Faraday instability is primarily determined
placeg with —a; and assume real-valued growth rates. Vali-through a Rayleigh-Taylor instability.
dation was carried out by comparing our infinite-depth To study the effects of shallow water, we tale
results with those of Josepst al. [15], and excellent quan- =0.5 cm(which giveskh~1) andv=10 cn?. Now, the RT
titative agreement was achieved. As expected, our finitewave number overpredicts the Faraday wave number by 16%
depth results approach those for infinite deptlh asxcreases. (ata./g~208) to 141%ata./g~32). Thus, the agreement
In our calculations, we fixor=20 dyn/cm ando=1 g/cn? between the RT and Faraday wave numbers in shallow water
while varying v. The value ofp is characteristic of most does not appear to be as good as in deep water. We note two
liguids used in Faraday instability experiments, and the valu@ther observations about the finite-depth results. First, the
of o is typical of organic liquids. For water-based solutions,tendency of the RT results to overpredict the Faraday results
o is closer to 70 dyn/cm, but this does not change the qualiis primarily due to the increased sensitivity of the RT disper-
tative nature of our results as indicated by other calculationsion relation to the fluid depth. For example, when
we have performed. The forcing frequency in the Faraday=10 cnt/s and the forcing frequency is 20 Hz, the critical
calculations is varied between 20 and 180 Hz, which is alsavave numbers for the Faraday instability are 1.48 ¢rat
typical of experiments. As the forcing frequency increasesinfinite depth and 1.93 cm' at h=0.5 cm. In contrast, the
so doa, andk.. We note that over the range of parameterscorresponding RT wave numbers are 1.47 and 4.65%m
examined in this study, the standing waves respond subharespectively. Second, the poorer agreement of the RT and
monically to the forcing. Faraday wave numbers at finite depth is not due to the fact

The infinite-depth case corresponds to the deep watdhat the maximum RT growth rate is smaller than the stand-
limit and we discuss these results first. In Fig. 1, we plot theng wave frequency. Again considering=10 cnf/s and a



1418 BRIEF REPORTS PRE 62

i L L L L
0 10 20 30 40 50 60 70 0 50 100 150 200 250

( a) a/g ( b) afg

0.8

06

0 100 200 300 400 500 800 700 800
() 3/

0.4

FIG. 1. Critical wave number at infinite depth for the Faraday instabisblid line) and fastest growing wave number for the corre-
sponding Rayleigh-Taylor instabilitydashed ling vs the critical acceleration amplitude,: (a) v=1 cn?/s, (b) v=10 cnt/s, (c) v
=100 cnf/s.

forcing frequency of 20 Hz, the RT growth rate is 120tst ~ RT instability does not play an important role in determining
h=0.5 cm, while the corresponding standing wave fre-the preferred wave number for the Faraday instability when
quency is 62.8 st the water is shallow and viscous effects are strong. However,
The results in the shallow water case are perhaps not suf?€y do suggest that the oscillatory motion of the standing
prising, given that the standing waves undergo small ampli?vaves and the presence of the bottom boundary also need to
tude oscillatory motion. This motion creates a flow which jsPe considered when elucidating the wavelength selection
not present in the RT instability, and can interact with themechanlsm for this regime.
bottom boundary. One consequence of this flow seems to be The author thanks Professor Daniel D. Joseph of the Uni-
the selection of longer wavelengths, as seen in the tendengkrsity of Minnesota for a conversation which stimulated this
of the RT calculations to overpredikt. As the fluid depth  work, and Professor Stephan Fauve of Ecole Normalé Supe

increases, the effect of this flow on the wavelength selectiofeure for helpful discussions. Financial support was provided
decreases. Our results should not be taken to mean that thterough LPS-ENS.
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