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Mechanism for the Faraday instability in viscous liquids
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This report presents a discussion of the wave number selection mechanism in the Faraday instability, which
arises when standing waves form on the free surface of a liquid subject to vertical sinusoidal oscillation. The
focus is on the case where the viscous effects are strong, i.e., when the wavelength is of the same order of
magnitude as the boundary layer thickness at the free surface. We investigate the relationship between the
Faraday instability and the Rayleigh-Taylor instability by performing linear stability calculations. In the deep
water limit ~wavelength! liquid depth!, our results indicate that the preferred wave number in the Faraday
instability is primarily determined through a Rayleigh-Taylor instability. In the case of shallow water~wave-
length ; liquid depth!, the agreement between the Rayleigh-Taylor and Faraday wave numbers does not
appear to be as good, probably due to the interaction between the oscillatory motion of the standing waves and
the bottom boundary.

PACS number~s!: 47.20.Ma, 47.54.1r
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Since their observation by Faraday in 1831@1#, the stand-
ing waves produced on the free surface of a liquid under
ing vertical sinusoidal oscillation have been extensively st
ied. Much of that study has been done recently, as th
waves provide a convenient way to investigate pattern
mation, stability, and dynamics in spatially extended non
ear systems~e.g., Refs.@2#– @5# and references therein!. De-
pending on the properties of the liquid, the depth of t
liquid layer, and the oscillation frequency, patterns as dive
as stripes, squares, and hexagons can be selected at ins
ity onset. Of particular interest is the use of relatively visco
liquids ~e.g., glycerol-water solutions@3#, silicone and paraf-
fin oils @4,6#!, which damp sidewall effects and cause t
selected pattern to be independent of container shape.
was first demonstrated by Edwards and Fauve, who us
two-frequency forcing scheme to generate surface wa
possessing quasicrystalline order in containers of differ
shapes@3#.

A measure of the influence of viscous forces on the F
aday instability is given by the productkd, wherek is the
instability wave number andd is the boundary layer thick
ness at the free surface@7#. k21 provides a measure not onl
of the instability wavelength, but also of the depth to whi
the free surface disturbance extends into the bulk liquid.
order of magnitude estimate ofd is An/v, wheren is the
kinematic viscosity of the liquid andv is the forcing fre-
quency. Whenkd!1, viscous effects are weak, whilekd
;1 implies that viscous effects are strong. The other imp
tant length scale in the problem is the liquid depth,h. kh
@1 is known as the deep water limit, while we will refer
kh;1 as the shallow water case.

The behavior of the standing waves in each of the regim
suggested by the above characterization has previously
examined through linear stability analyses; we briefly su
marize some key results. In the limit of deep water and w
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viscous effects (kh@1,kd!1), the waves can be modeled b
a damped Mathieu equation@7#:

d2z

dt2
14nk2

dz

dt
1@gk1sk3/r2ak cos~vt !#z50. ~1!

Here,z is the surface deformation~amplitude of the surface
waves after the spatial dependence has been factored ou!, s
is the surface tension,a is the amplitude of the forcing ac
celeration, andg is the acceleration of gravity. The physic
model this equation corresponds to is that of a damped p
dulum whose pivot point oscillates vertically at frequencyv
and amplitudea @8#. The instability is parametric in natur
since the forcing appears in the coefficients of~1! rather than
through an inhomogeneous term. As first noted by Benjam
and Ursell, standing waves can form even ifa/g,1 @9#.
When the water becomes shallow and viscous effects rem
weak (kh;1, kd!1), an equation which is nonlocal in tim
~i.e., an integro-differential equation! is needed to describe
the behavior ofz @10,11#. The nonlocality arises because
viscous dissipation at the bottom boundary, and it cor
sponds to a history-dependent damping in the pendu
model mentioned above. Again, instability can occur even
a/g,1.

The surface deformation also obeys a nonlocal equa
when the water is deep and viscous effects are strongkh
@1,kd;1) @12#. However, Cerda and Tirapegui have show
that a local equation can quantitatively describez when the
water becomes shallow@7#. This equation is again a Mathie
equation, but the dependence of the damping on the w
number is much different than when viscous effects
weak. In this regime (kh;1,kd;1), diffusion of momen-
tum occurs so rapidly relative to the surface oscillations t
the damping no longer depends on the history of the mot
When viscous effects are strong, the critical acceleration
plitude,ac , required to excite the standing waves is typica
larger than the acceleration of gravity,g.

While a number of studies have explored the behavior
the Faraday instability when viscous effects are strong,
attention has been paid to the physical mechanisms res

g,
1416 ©2000 The American Physical Society
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sible for this instability. Although the instability can still b
characterized as parametric, the fact thatac /g.1 suggests
that a Rayleigh-Taylor~RT!-type mechanism may be impo
tant because the container experiences a body force in
direction opposite to gravity for part of the oscillation perio
Lioubashevskiet al. explored this idea by scaling the mea
upward acceleration based onac with hv2, and plotting the
result against (d/h)2 @13#. The data from a number of differ
ent experiments in the shallow water case were found
collapse onto a single curve, and the scaling was found
break down asac approachedg. This issue was also ad
dressed by Cerda and Tirapegui. Based on the mo
Mathieu equation they developed, they stated that ‘‘ . . . the
amplification is due essentially to the fact that the syst
spends time in regions of effective negative accelerati
which is an unstable situation as the Rayleigh-Taylor ins
bility shows . . . ’’ ~p. 221 of Ref.@7#!.

Although both of the above studies recognize the poten
importance of a RT instability, neither explicitly calculate
and compares a RT wave number with a Faraday wave n
ber. In this work, we bridge that gap by performing line
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stability calculations for both the Faraday and RT instab
ties. First, for a given set of problem parameters, we comp
ac along with the corresponding critical wave number,kc .
Then, using a mean upward acceleration based onac , we
calculate the fastest growing wave number of the associ
RT instability. Good agreement of this wave number w
that from the Faraday instability would indicate that t
wave number selection mechanism is a RT instability.

The calculations concerning the Faraday instability
performed by the method we used previously@14#. A recur-
sion relation for the temporal modes of the free surface
formation is developed, converted into an eigenvalue pr
lem, and then solved numerically. The calculatio
concerning the RT instability are performed by solving t
relevant dispersion relations using Newton’s method. In
infinite-depth case, we solve

2ack1
s

r
k31n2~q412q2k224qk31k4!50, ~2!

while in the finite-depth case, we solve
2ack1
s

r
k32n2S 4k2q~k21q2!2C cosh~qh!cosh~kh!1D sinh~qh!sinh~kh!

q cosh~qh!sinh~kh!2k cosh~kh!sinh~qh! D50, ~3!
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C5q~q412q2k215k4!, ~4!

D5k~q416q2k21k4!. ~5!

Hereq25k21s/n, wheres is the instability growth rate. The
mean upward acceleration,ac , is defined to be

ac5
v

pE3p/2v

5p/2v

@accos~vt !2g#dt5
2

p
ac2g. ~6!

These dispersion relations can be derived from those for
forced free surface waves@10,14#; one simply needs to re
placeg with 2ac and assume real-valued growth rates. Va
dation was carried out by comparing our infinite-dep
results with those of Josephet al. @15#, and excellent quan
titative agreement was achieved. As expected, our fin
depth results approach those for infinite depth ash increases.
In our calculations, we fixs520 dyn/cm andr51 g/cm3

while varying n. The value ofr is characteristic of mos
liquids used in Faraday instability experiments, and the va
of s is typical of organic liquids. For water-based solution
s is closer to 70 dyn/cm, but this does not change the qu
tative nature of our results as indicated by other calculati
we have performed. The forcing frequency in the Farad
calculations is varied between 20 and 180 Hz, which is a
typical of experiments. As the forcing frequency increas
so doac andkc . We note that over the range of paramete
examined in this study, the standing waves respond sub
monically to the forcing.

The infinite-depth case corresponds to the deep w
limit and we discuss these results first. In Fig. 1, we plot
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critical wave number from the Faraday and RT calculatio
versusac /g. For n51 cm2/s, the RT results underpredic
the Faraday results by 25%~at ac /g;58) to 42%~at ac /g
;5) @Fig. 1~a!#. Much better agreement is achieved wh
viscous effects become stronger, as seen in Fig. 1~b! where
n510 cm2/s. Now, the RT results underpredict the Farad
results by 1%~at ac /g;6), and overpredict them by 6%~at
ac /g;203). Finally, Fig. 1~c! demonstrates that the agre
ment continues to be reasonably good~within about 10%! for
n5100 cm2/s. These results indicate that for the case
deep water and strong viscous effects, the preferred w
number in the Faraday instability is primarily determin
through a Rayleigh-Taylor instability.

To study the effects of shallow water, we takeh
50.5 cm~which giveskh;1) andn510 cm2. Now, the RT
wave number overpredicts the Faraday wave number by 1
~at ac /g;208) to 141%~at ac /g;32). Thus, the agreemen
between the RT and Faraday wave numbers in shallow w
does not appear to be as good as in deep water. We note
other observations about the finite-depth results. First,
tendency of the RT results to overpredict the Faraday res
is primarily due to the increased sensitivity of the RT disp
sion relation to the fluid depth. For example, whenn
510 cm2/s and the forcing frequency is 20 Hz, the critic
wave numbers for the Faraday instability are 1.48 cm21 at
infinite depth and 1.93 cm21 at h50.5 cm. In contrast, the
corresponding RT wave numbers are 1.47 and 4.65 cm21,
respectively. Second, the poorer agreement of the RT
Faraday wave numbers at finite depth is not due to the
that the maximum RT growth rate is smaller than the sta
ing wave frequency. Again consideringn510 cm2/s and a
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FIG. 1. Critical wave number at infinite depth for the Faraday instability~solid line! and fastest growing wave number for the corr
sponding Rayleigh-Taylor instability~dashed line! vs the critical acceleration amplitude,ac : ~a! n51 cm2/s, ~b! n510 cm2/s, ~c! n
5100 cm2/s.
re

su
p
is
he
o
n

tio
t

ng
en

ver,
ing
d to

tion

ni-
his
pe
ed
forcing frequency of 20 Hz, the RT growth rate is 120 s21 at
h50.5 cm, while the corresponding standing wave f
quency is 62.8 s21.

The results in the shallow water case are perhaps not
prising, given that the standing waves undergo small am
tude oscillatory motion. This motion creates a flow which
not present in the RT instability, and can interact with t
bottom boundary. One consequence of this flow seems t
the selection of longer wavelengths, as seen in the tende
of the RT calculations to overpredictkc . As the fluid depth
increases, the effect of this flow on the wavelength selec
decreases. Our results should not be taken to mean tha
lui
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RT instability does not play an important role in determini
the preferred wave number for the Faraday instability wh
the water is shallow and viscous effects are strong. Howe
they do suggest that the oscillatory motion of the stand
waves and the presence of the bottom boundary also nee
be considered when elucidating the wavelength selec
mechanism for this regime.
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